Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Int. j. morphol ; 41(1): 59-64, feb. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1430527

ABSTRACT

El periodo postnatal temprano se caracteriza por rápido crecimiento cerebral, posiblemente relacionado con variaciones del oxígeno tisular. Esto ha motivado el estudio de protocolos que suministran diferentes concentraciones de oxígeno intermitentes, para observar sus efectos morfológicos y cerebrales. Se utilizaron 52 crías de ratas Sprague Dawley, distribuidas en igual número a cuatro grupos experimentales, Control (C, 21 %O2), Hipoxia Intermitente (HI, 11 %O2), Hiperoxia Intermitente (HOI, 30 %O2) e Hipoxia Hiperoxia Intermitente (HHI, 11 % -30 %O2). Los protocolos consideraron 5 ciclos de 5 minutos de dosificación, durante 50 minutos diarios. Se realizó en una cámara semihermética entre los días 5 al 11 postnatales. Las evaluaciones de crecimiento corporal y cuantificación neuronal, se realizaron en las crías macho, en el día 28 postnatal. El peso corporal en el grupo hipoxia intermitente mostró diferencias significativas respecto al grupo hiperoxia intermitente (HI vs HOI, p<0,01) y al grupo hipoxia-hiperoxia Intermitente (HI vs HHI, p< 0,001). La talla corporal disminuyó en el grupo hipoxia-hiperoxia intermitente con diferencias significativas respecto del grupo control (C vs HHI, p<0,05) y respecto del grupo hipoxia intermitente (HHI vs HI, p< 0,01). El conteo neuronal en el área CA1 del hipocampo aumentó en el grupo hipoxia intermitente con diferencias significativas respecto a los grupos control (C vs HI; p<0,05), al grupo hiperoxia intermitente (HI vs HOI; p<0,001) y al grupo hipoxia-hiperoxia intermitente (HI vs HHI; p<0,001). Finalmente, el grupo hipoxia- hiperoxia Intermitente disminuyó significativamente en la cantidad de neuronas en comparación al grupo hiperoxia intermitente (HHI vs HOI; p<0,001). La hipoxia intermitente mostró resultados beneficiosos en el crecimiento corporal y cantidad de neuronas en el área CA1 del hipocampo, en contraste, la hipoxia hiperoxia intermitente experimentó resultados adversos con disminución de estas variables, en el periodo postnatal temprano de la rata.


SUMMARY: The early postnatal period is characterized by rapid brain growth, possibly related to variations in tissue oxygen. This has motivated the study of protocols that supply different intermittent oxygen concentrations, to observe their morphological and cerebral effects. Fifty-two pups Sprague-Dawley rats were distributed in equal numbers into four experimental groups, Control (C, 21 %O), Intermittent Hypoxia (HI, 11 %O), Intermittent Hyperoxia (HOI, 30 %O2) and Intermittent Hypoxia Hyperoxia (HHI, 11 % - 30 %O2). The protocols considered 5 cycles of 5 min of dosing, for 50 min diary. It was performed in a semi- hermetic chamber between 5 to 11postnatal days. The evaluations of body growth and neuronal quantification were analyzed in male pups, on postnatal day 28. Body weight in the intermittent hypoxia group showed significant differences compared to the intermittent hyperoxia group (HI vs HOI, p<0.01) and the intermittent hypoxia- hyperoxia group (HI vs HHI, p<0.001). Body size decreased in the Intermittent hypoxia-hyperoxia group with significant differences compared to the control group (C vs HHI, p<0.05) and with respect to the intermittent hypoxia group (HHI vs HI, p<0.01). The neuronal count in the area CA1 of the hippocampus increased in the intermittent hypoxia group with significant differences compared to the control groups (C vs HI; p<0.05), to the intermittent hyperoxia group (HI vs HOI; p< 0.001) and the intermittent hypoxia-hyperoxia group (HI vs HHI; p<0.001). Finally, the intermittent hypoxia- hyperoxia group decreased significantly in the number of neurons compared with the intermittent hyperoxia group (HHI vs HOI; p<0.001). Intermittent hypoxia showed beneficial results in body growth and the number of neurons in the CA1 area of the hippocampus, in contrast, intermittent hypoxia-hyperoxia experienced adverse results with a decrease in these variables, in the early postnatal period of the rat.


Subject(s)
Animals , Female , Rats , Oxygen/administration & dosage , CA1 Region, Hippocampal/growth & development , Hypoxia , Time Factors , Rats, Sprague-Dawley , Hyperoxia
2.
Chinese Journal of Contemporary Pediatrics ; (12): 1289-1294, 2021.
Article in English | WPRIM | ID: wpr-922249

ABSTRACT

OBJECTIVES@#To study the role of the low-density lipoprotein receptor-related protein 1 (LRP1)-proline-rich tyrosine kinase 2 phosphorylation (pPyk2)-matrix metalloproteinases 9 (MMP9) pathway in hyperoxia-induced lung injury in neonatal rats.@*METHODS@#A total of 16 neonatal rats were randomly placed in chambers containing room air (air group) or 95% medical oxygen (hyperoxia group) immediately after birth, with 8 rats in each group. All of the rats were sacrificed on day 8 of life. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue. ELISA was used to measure the levels of soluble LRP1 (sLRP1) and MMP9 in serum and bronchoalveolar lavage fluid (BALF). Western blot was used to measure the protein expression levels of LRP1, MMP9, Pyk2, and pPyk2 in lung tissue. RT-PCR was used to measure the mRNA expression levels of LRP1 and MMP9 in lung tissue.@*RESULTS@#The hyperoxia group had significantly higher levels of sLRP1 and MMP9 in serum and BALF than the air group (@*CONCLUSIONS@#The activation of the LRP1-pPyk2-MMP9 pathway is enhanced in hyperoxia-induced lung injury in neonatal rats, which may be involved in the pathogenesis of bronchopulmonary dysplasia.


Subject(s)
Animals , Rats , Animals, Newborn , Hyperoxia/complications , Lung , Lung Injury/etiology , Matrix Metalloproteinase 9/genetics
3.
Chinese Journal of Contemporary Pediatrics ; (12): 1282-1288, 2021.
Article in English | WPRIM | ID: wpr-922248

ABSTRACT

OBJECTIVES@#To study the role of adrenomedullin (ADM) in hyperoxia-induced lung injury by examining the effect of ADM on the expression of calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 2 (RAMP2), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB) in human pulmonary microvascular endothelial cells (HPMECs) under different experimental conditions.@*METHODS@#HPMECs were randomly divided into an air group and a hyperoxia group (@*RESULTS@#Compared with the air group, the hyperoxia group had significant increases in the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB (@*CONCLUSIONS@#ERK1/2 and PKB may be the downstream targets of the ADM signaling pathway. ADM mediates the ERK/PKB signaling pathway by regulating CRLR/RAMP2 and participates in the protection of hyperoxia-induced lung injury.


Subject(s)
Humans , Adrenomedullin/genetics , Endothelial Cells , Hyperoxia/complications , Lung Injury , Receptor Activity-Modifying Proteins
5.
Braz. j. med. biol. res ; 53(2): e8917, 2020. graf
Article in English | LILACS | ID: biblio-1055492

ABSTRACT

This study investigates the effect of the overexpression of the placental growth factor (PGF) and hyperoxia on lung development and determines whether anti-PGF antibody ameliorates hyperoxia-mediated impairment of lung development in newborn rats. After exposure to normoxic conditions for seven days, newborn rats subjected to normoxia were intraperitoneally or intratracheally injected with physiological saline, adenovirus-negative control (Ad-NC), or adenovirus-PGF (Ad-PGF) to create the Normoxia, Normoxia+Ad-NC, and Normoxia+Ad-PGF groups, respectively. Newborn rats subjected to hyperoxia were intraperitoneally injected with physiological saline or anti-PGF antibodies to create the Hyperoxia and Hyperoxia+anti-PGF groups, respectively. Our results revealed significant augmentation in the levels of PGF and its receptor Flt-1 in the lung tissues of newborn rats belonging to the Normoxia+Ad-PGF or Hyperoxia groups. PGF overexpression in these groups caused lung injury in newborn rats, while anti-PGF antibody treatment significantly cured the hyperoxia-induced lung injury. Moreover, PGF overexpression significantly increased TNF-α and Il-6 levels in the bronchoalveolar lavage (BAL) fluid of the Normoxia+Ad-PGF and Hyperoxia groups. However, their levels were significantly reduced in the BAL fluid of the Hyperoxia+anti-PGF group. Immunohistochemical analysis revealed that PGF overexpression and hyperoxia treatment significantly increased the expression of the angiogenesis marker, CD34. However, its expression was significantly decreased upon administration of anti-PGF antibodies (compared to the control group under hyperoxia). In conclusion, PGF overexpression impairs lung development in newborn rats while its inhibition using an anti-PGF antibody ameliorates the same. These results provided new insights for the clinical management of bronchopulmonary dysplasia in premature infants.


Subject(s)
Animals , Female , Pregnancy , Rats , Autoantibodies/metabolism , Hyperoxia/metabolism , Lung Injury/metabolism , Placenta Growth Factor/metabolism , Antibodies, Monoclonal/metabolism , Autoantibodies/immunology , Microscopy, Electron, Scanning , Hyperoxia/complications , Hyperoxia/diagnostic imaging , Disease Models, Animal , Lung Injury/pathology , Lung Injury/diagnostic imaging , Placenta Growth Factor/immunology , Animals, Newborn , Antibodies, Monoclonal/immunology
6.
Biol. Res ; 53: 51, 2020. tab, graf
Article in English | LILACS | ID: biblio-1142418

ABSTRACT

BACKGROUND: Hyperoxia at resuscitation increases oxidative stress, and even brief exposure to high oxygen concentrations during stabilization may trigger organ injury with adverse long-term outcomes in premature infants. We studied the long-term effects of short-term perinatal oxygen exposure on cell cycle gene expression and lung growth in adult mice. METHODS: We randomized mice litters at birth to 21,40, or 100%O2 for 30 min and recovered in room air for 4 or 12 weeks. Cell cycle gene expression, protein analysis, and lung morphometry were assessed at 4 and 12 weeks. RESULTS: The principal component analysis demonstrated a high degree of correlation for cell cycle gene expression among the three oxygen groups. Lung elastin was significantly lower in the 100%O2 groups at 4 weeks. On lung morphometry, radial alveolar count, alveolar number, and septal count were similar. However, the mean linear intercept (MLI) and septal length significantly correlated among the oxygen groups. The MLI was markedly higher in the 100%O2 groups at 4 and 12 weeks of age, and the septal length was significantly lower in the 100%O2 groups at 12 weeks. CONCLUSION: Short-term exposure to high oxygen concentrations lead to subtle changes in lung development that may affect alveolarization. The changes are related explicitly to secondary crest formation that may result in alteration in lung elastin. Resuscitation with high oxygen concentrations may have a significant impact on lung development and long-term outcomes such as BPD in premature infants.


Subject(s)
Animals , Female , Pregnancy , Mice , Oxygen/adverse effects , Hyperoxia/pathology , Lung/pathology , Elastin/metabolism , Oxidative Stress , Lung/growth & development
7.
Journal of Central South University(Medical Sciences) ; (12): 759-765, 2020.
Article in English | WPRIM | ID: wpr-827414

ABSTRACT

OBJECTIVES@#To observe the electrophysiological changes of astrocytes in the process of hyperoxia induced apoptosis and analyze the relationship between electrophysiological characteristics and morphological changes.@*METHODS@#Astrocytes were exposed to 90% hyperoxia for 12-72 h. The electrophysiological characteristics of astrocytes in each group were detected by patch clamp technique, and the morphological characteristics of astrocytes were observed at the same time. Then the same batch of astrocytes were collected, and the expression levels of caspase-1, caspase-3, gasdermin D (GSDMD) and gasdermin E (GSDME) were detected by Western blotting.@*RESULTS@#From 12 h to 72 h after hyperoxia exposure, the inward current was significantly lower than that of the control group (0.05). At each time point, the morphology of cells changed correspondingly. Western blotting showed that the expression of caspase-1 was increased significantly at 24 h and decreased significantly at 72 h after hyperoxia exposure (0.05), but began to decrease at 48 h (<0.05); GSDME increased gradually at 24 h after hyperoxia exposure (<0.05).@*CONCLUSIONS@#Under hyperoxia exposure, the ion channels of astrocytes are damaged, which can maintain the dysfunction of ion homeostasis, activate GSDME, induce the damaged cells to break away from the apoptotic pathway, and mediate the pyroptosis.


Subject(s)
Humans , Apoptosis , Astrocytes , Caspase 1 , Hyperoxia , Intracellular Signaling Peptides and Proteins , Neoplasm Proteins , Phosphate-Binding Proteins , Pyroptosis
8.
Chinese Journal of Contemporary Pediatrics ; (12): 71-76, 2020.
Article in Chinese | WPRIM | ID: wpr-781692

ABSTRACT

OBJECTIVE@#To study the protective effect of asiaticoside against hyperoxia-induced bronchopulmonary dysplasia in neonatal rats based on the microRNA-155 (miR-155)/suppressor of cytokine signaling-1 (SOCS1) axis.@*METHODS@#Neonatal rats were randomly divided into a control group, a model group, a low-dose asiaticoside group (10 mg/kg), a middle-dose asiaticoside group (25 mg/kg), a high-dose asiaticoside group (50 mg/kg), and a budesonide group (1.5 mg/kg), with 12 rats in each group. All rats except those in the control group were exposed to a high concentration of oxygen for 14 days to establish a neonatal rat model of bronchopulmonary dysplasia. The low-, middle-, and high-dose asiaticoside groups were given asiaticoside at different doses by gavage, and those in the budesonide group were given budesonide aerosol treatment. Hematoxylin and eosin staining was used to observe lung tissue development and measure radial alveolar count (RAC) and mean linear intercept (MLI). Superoxide dismutase (SOD) and malondialdehyde (MDA) detection kits were used to measure the levels of SOD and MDA in lung tissue. ELISA was used to measure the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Quantitative real-time PCR was used to measure the mRNA expression of miR-155 and SOCS1 in lung tissue. Western blotting was used to measure the protein expression of SOCS1 in lung tissue.@*RESULTS@#Compared with the control group, the model group had the symptoms of bronchopulmonary dysplasia such as a disordered structure of lung tissue, enlargement of alveolar fusion, uneven alveolar septa, enlargement of average alveolar space, and a reduction in alveolar number. The model group also had significant increases in MLI, MDA level in lung tissue, serum levels of IL-6 and TNF-α, and miR-155 level in lung tissue (P0.05).@*CONCLUSIONS@#Asiaticoside can alleviate inflammation injury induced by hyperoxia in neonatal rats and improve the symptoms of bronchopulmonary dysplasia in a dose-dependent manner, possibly by down-regulating the expression of miR-155 and up-regulating the expression of SOCS1.


Subject(s)
Animals , Rats , Animals, Newborn , Bronchopulmonary Dysplasia , Hyperoxia , Lung , MicroRNAs , Triterpenes
9.
Chinese Journal of Contemporary Pediatrics ; (12): 1331-1337, 2020.
Article in Chinese | WPRIM | ID: wpr-879798

ABSTRACT

OBJECTIVE@#To study the expression and significance of ubiquitin-specific protease 7 (USP7) and the key factors of the Wnt signaling pathway in the lung tissue of preterm rats after hyperoxia exposure.@*METHODS@#A total of 180 preterm neonatal Wistar rats were randomly divided into an air control group, an air intervention group, a hyperoxia control group, and a hyperoxia intervention group, with 45 rats in each group. Lung injury was induced by hyperoxia exposure in the hyperoxia groups. The preterm rats in the intervention groups were given intraperitoneal injection of the USP7 specific inhibitor P5091 (5 mg/kg) every day. The animals were sacrificed on days 3, 5, and 9 of the experiment to collect lung tissue specimens. Hematoxylin-eosin staining was used to observe the pathological changes of lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression levels of USP7 and the key factors of the Wnt signaling pathway β-catenin and α-smooth muscle actin (α-SMA) in lung tissue.@*RESULTS@#The air groups had normal morphology and structure of lung tissue; on days 3 and 5, the hyperoxia control group showed obvious alveolar compression and disordered structure, with obvious inflammatory cells, erythrocyte diapedesis, and interstitial edema. On day 9, the hyperoxia control group showed alveolar structural disorder and obvious thickening of the alveolar septa. Compared with the hyperoxia control group at the corresponding time points, the hyperoxia intervention group had significantly alleviated disordered structure, inflammatory cell infiltration, and bleeding in lung tissue. At each time point, the hyperoxia groups had a significantly lower radial alveolar count (RAC) than the corresponding air groups (@*CONCLUSIONS@#Hyperoxia exposure can activate the Wnt/β-catenin signaling pathway, and USP7 may participate in hyperoxic lung injury through the Wnt/β-catenin signaling pathway. The USP7 specific inhibitor P5091 may accelerate the degradation of β-catenin by enhancing its ubiquitination, reduce lung epithelial-mesenchymal transition, and thus exert a certain protective effect against hyperoxic lung injury.


Subject(s)
Animals , Rats , Animals, Newborn , Hyperoxia/physiopathology , Lung/physiopathology , Random Allocation , Rats, Wistar , Thiophenes/pharmacology , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Proteases , Wnt Signaling Pathway
10.
Arch. argent. pediatr ; 117(4): 237-244, ago. 2019. ilus, tab
Article in English, Spanish | BINACIS, LILACS | ID: biblio-1054927

ABSTRACT

Objetivos: Al ser un antioxidante, el licopeno protege a las células contra el daño causado por los radicales libres, fortalece los enlaces intercelulares y mejora el metabolismo celular. Este estudio analiza los efectos del licopeno sobre los trastornos neurodegenerativos por hiperoxia en ratas recién nacidas a término. Métodos: Estas ratas se dividieron en cuatro grupos: grupo 1 de referencia con normoxia, grupo 2 con normoxia + licopeno, grupo 3 de referencia con hiperoxia y grupo 4 con hiperoxia + licopeno. Los grupos 1 y 2 se supervisaron en condiciones de aire ambiental, y los grupos 3 y 4 se supervisaron con un nivel de oxígeno > 85 % O2. Los grupos 2 y 4 recibieron inyecciones intraperitoneales de licopeno de 50 mg/kg/día; los otros grupos recibieron inyecciones intraperitoneales de aceite de maíz con el mismo volumen. Las ratas se sacrificaron en el día 11, después de 10 días con hiperoxia. Se extrajeron los cerebros, y se evaluaron los parámetros del sistema oxidativo. Resultados: Se detectaron lesiones cerebrales por hiperoxia en sustancia blanca, regiones corticales y tálamo. Aumentó la cantidad de células apoptóticas y disminuyó la cantidad de células PCNA positivas en los grupos 3 y 4, comparados con el grupo 1. No se observó una mejora significativa en la cantidad de células apoptóticas y células PCNA positivas en los grupos 3 y 4; además, aumentó la apoptosis. Conclusión: Se halló que el licopeno no mostró efectos terapéuticos para el daño cerebral en ratas recién nacidas. Además, se demostró que el licopeno podría causar efectos tóxicos.


Objectives. In addition to protecting cells against free radical harm thanks to its anti-oxidant nature, lycopene strengthens the bonds among cells and improves cell metabolism. This study focuses on analyzing therapeutic effects of lycopene in hyperoxia-induced neurodegenerative disorders in newborn rats. Methods. Term newborn rats were divided into four groups as the normoxia control group (group-1), normoxia+lycopene group (group-2), hyperoxia control group (group-3) and hyperoxia+lycopene group (group-4). Group-1 and group-2 were monitored in room air while the group-3 and group-4 were monitored at > 85% O2. The group-2 and group-4 were injected with lycopene intrapertioneally (i.p. ) at 50mg/kg/day while the other groups were injected with corn oil i.p. at the same volume. The rats we sacrificed on the 11th day following the 10-day hyperoxia. The brains were removed and oxidant system parameters were assessed. Results. Injury resulting from hyperoxia was detected in the white matter, cortical regions, and thalamus of the brains. It was observed that the number of apoptotic cells increased and the number of proliferating cell nuclear antigen (PCNA) positive cells decreased in the groups-3 and 4 compared to the group-1. No significant improvement in the number of apoptotic cells and PCNA positive cells was observed in the groups-3 and 4, and apoptosis increased as well. Conclusion. This study found that lycopene, did not show any therapeutic effects for brain damage treatment in newborn rats. In addition, this study demonstrated that lycopene might lead to toxic effects.


Subject(s)
Animals , Rats , Hyperoxia , Lycopene , Rats , Enzyme-Linked Immunosorbent Assay , In Situ Nick-End Labeling , Free Radicals
11.
Chinese Journal of Contemporary Pediatrics ; (12): 594-600, 2019.
Article in Chinese | WPRIM | ID: wpr-775139

ABSTRACT

OBJECTIVE@#To study the effect of hyperoxic exposure on the dynamic expression of heme oxygenase-1 (HO-1) and glutamate-L-cysteine ligase catalytic subunit (GCLC) in the lung tissue of preterm neonatal rats.@*METHODS@#Cesarean section was performed for rats on day 21 of gestation to obtain 80 preterm rats, which were randomly divided into air group and hyperoxia group after one day of feeding. The rats in the air group were housed in room air under atmospheric pressure, and those in the hyperoxia group were placed in an atmospheric oxygen tank (oxygen concentration 85%-95%) in the same room. Eight rats each were selected from each group on days 1, 4, 7, 10, and 14, and lung tissue samples were collected. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue at different time points after air or hyperoxic exposure. Western blot and RT-qPCR were used to measure the protein and mRNA expression of HO-1 and GCLC in the lung tissue of preterm rats at different time points after air or hyperoxic exposure.@*RESULTS@#Compared with the air group, the hyperoxia group had a significant reduction in the body weight (P<0.05). Compared with the air group, the hyperoxia group had structural disorder, widening of alveolar septa, a reduction in the number of alveoli, and simplification of the alveoli on the pathological section of lung tissue. Compared with the air group, the hyperoxia group had significantly lower relative mRNA expression of HO-1 in the lung tissue on day 7 and significantly higher expression on days 10 and 14 (P<0.05). Compared with the air group, the hyperoxia group had significantly lower mRNA expression of GCLC in the lung tissue on days 1, 4, and 7 and significantly higher expression on day 10 (P<0.05). Compared with the air group, the hyperoxia group had significantly higher protein expression of HO-1 in the lung tissue on all days, and the protein expression of GCLC had same results as HO-1, except on day 1 (P<0.05).@*CONCLUSIONS@#Hyperoxia exposure may lead to growth retardation and lung developmental retardation in preterm rats. Changes in the protein and mRNA expression of HO-1 and GCLC in the lung tissue of preterm rats may be associated with the pathogenesis of hyperoxia-induced lung injury in preterm rats.


Subject(s)
Animals , Female , Humans , Infant, Newborn , Pregnancy , Rats , Animals, Newborn , Catalytic Domain , Cesarean Section , Cysteine , Glutamates , Heme Oxygenase-1 , Hyperoxia , Lung , Rats, Sprague-Dawley
12.
Journal of Southern Medical University ; (12): 816-822, 2019.
Article in Chinese | WPRIM | ID: wpr-773527

ABSTRACT

OBJECTIVE@#To investigate the protective effect of vitamin D (VD) against hyperoxia-induced bronchopulmonary dysplasia (BPD) in newborn mice and explore the mechanism.@*METHODS@#Thirty-six newborn mice were randomly divided into air + VD group, air + saline group, hyperoxia + VD group, and hyperoxia + saline group. In all the groups, saline or VD was administered on a daily basis intramuscular injection. After 3 weeks of treatment, the mice were weighed and cardiac blood was collected for measurement of serum VD level using ELISA, and histological examination of the lungs was performed. Radial alveolar counting (RAC) and alveolar secondary interval volume density were measured using image analysis software. The expression levels of vascular endothelial cell growth factor (VEGF) and VEGF receptor 2 (VEGFR2) in the lung tissues were detected using Western blotting.@*RESULTS@#The weight gain rate of the mice and the weight of the lungs were significantly higher in air + saline group and air + VD group than in the hyperoxia + saline group. The RAC was significantly lower in hyperoxic+saline group than that in hyperoxia+VD group ( < 0.001), and was significantly higher in hyperoxic+VD (125 times) than in hyperoxia + VD (1250 times) group ( < 0.01). The alveolar secondary protrusion count was significantly higher in hyperoxic+VD (1250 times) group than in hyperoxic+saline group ( < 0.001), and was significantly higher in hyperoxia+VD (125 times) group than in hyperoxia + VD (1250 times) group ( < 0.01). Compared with that in air + saline group, VEGFR2 expression was significantly lowered in hyperoxia+saline group ( < 0.05) and in air+VD group ( < 0.05); VEGFR2 expression was significantly higher in hyperoxia+VD (1250 times) group than in hyperoxia+saline group ( < 0.001) and hyperoxia+VD (125 times) group ( < 0.001); VEGFR2 expression was significantly higher in hyperoxia+VD (125 times) group than in hyperoxia+ saline group ( < 0.05).@*CONCLUSIONS@#In newborn mice with BPD, VD supplement can increase the weight of the lungs and promote lung maturation, and a higher concentration of VD can better protect the lungs and promote the growth of pulmonary blood vessels.


Subject(s)
Animals , Mice , Animals, Newborn , Bronchopulmonary Dysplasia , Hyperoxia , Lung , Vitamin D
13.
Int. j. morphol ; 36(4): 1310-1315, Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-975701

ABSTRACT

Exposure to normobaric hyperoxia (NH) is known to increase the production of reactive oxygen species (ROS) by mitochondria. The present study was designed to examine mitochondrial ultrastructure morphological changes in the cortical brainin relation to glutathione peroxidase (GPX) activity and free radicals (FR) productions in brain tissue during hyperoxia exposure. The experimental groups were exposed to NH for 24 and 48 h continuously. Following the exposure periods, animals were sacrificed and cortical tissues were divided randomly into two parts; the first part was processed for the ultrastructural examination and the second was homogenized for GPX and FR determinations. Analysis of variance (ANOVA) showed that the main effects of O2 exposure periods were significant (p<0.05) for GPX and FR. Pair-wise means comparisons showed that NH elevated the average (+SE) GPX activity significantly (p<0.05) from the baseline control value of 5670.99+556.34 to13748.42+283.04 and 15134.19+1529.26 U/L with increasing length of NH exposure period from 24 to 48 h, respectively. Similarly, FR production was increased significantly (p<0.05) to 169.73+10.31 and 185.33+21.87, above baseline control of 105.27+5.25 Unit. Ultrastructure examination showed that O2 breathing for 48 h resulted in giant and swelled mitochondria associated with diluted inner membrane and damaged cristae. These mitochondria pathological alterations were associated with damages of myelin, axonal and cellular organelles. Normobaric-hyperoxia inducts mitochondria oxidative stress (MOS) and the subsequent rise of ROS causes variety of ultrastructure morphological pathological alterations in the organelles of cortical brain cells.


Se sabe que la exposición a la hiperoxia normobárica (HN) aumenta la producción de especies reactivas de oxígeno (ERO) por parte de las mitocondrias. El estudio se diseñó para examinar los cambios morfológicos de la ultraestructura mitocondrial en la corteza cerebral con la actividad de la glutatión peroxidasa (GPX) y la producción de radicales libres (RL) en el tejido cerebral durante la exposición a la hiperoxia. Los grupos experimentales fueron expuestos a HN durante 24 y 48 h continuamente. Tras los períodos de exposición, los animales se sacrificaron y los tejidos corticales se dividieron aleatoriamente en dos partes; la primera parte se procesó para el examen ultraestructural y la segunda se homogeneizó para las determinaciones de GPX y RL. El análisis de varianza (ANOVA) mostró que los efectos principales de los períodos de exposición al O2 fueron significativos (p <0,05) para GPX y RL. Las comparaciones de medias por pares mostraron que la HN elevó la actividad promedio de GPX (+ SE) significativamente (p <0,05) desde el valor de control de línea base de 5670,99 + 556,34 a 13748,42 + 283,04 y 15134,19 + 1529,26 U / L con una mayor duración del período de exposición a HN de 24 a 48 h, respectivamente. De manera similar, la producción de RL se incrementó significativamente (p <0,05) a 169,73 + 10,31 y 185,33 + 21,87, por encima del control de referencia de 105,27 + 5,25 unidades. El examen de la ultraestructura mostró que la respiración de O2 durante 48 h dio lugar a mitocondrias gigantes e hinchadas asociadas con la membrana interna diluida y las crestas dañadas. Estas alteraciones patológicas de las mitocondrias se asociaron con daños de mielina, axones y organelos celulares. La hiperoxia normobárica induce el estrés oxidativo mitocondrial (MOS) y el posterior aumento de las ERO provoca una variedad de alteraciones patológicas y morfológicas en los organelos de las células cerebrales corticales.


Subject(s)
Animals , Rats , Cerebral Cortex/ultrastructure , Hyperoxia/pathology , Mitochondria/pathology , Cerebral Cortex/enzymology , Cerebral Cortex/pathology , Analysis of Variance , Reactive Oxygen Species , Rats, Wistar , Reactive Nitrogen Species , Glutathione Peroxidase/metabolism , Mitochondria/ultrastructure
14.
Chinese Journal of Contemporary Pediatrics ; (12): 403-409, 2018.
Article in Chinese | WPRIM | ID: wpr-689617

ABSTRACT

<p><b>OBJECTIVE</b>To study the expression of SUMO-modified CCAAT enhancer binding protein α (C/EBPα) in preterm rat model of bronchopulmonary dysplasisa (BPD) induced by hyperoxia exposure and its role.</p><p><b>METHODS</b>Eighteen preterm rats were randomly divided into an air group and a hyperoxia group (n=9 each). The model of BPD was prepared in preterm rats exposed to hyperoxia. The rats from the two groups were sacrificed on postnatal days 4, 7 and 14 respectively (3 rats at each time) and lung tissues were harvested. Periodic acid-Schiff (PAS) staining was used to observe the differentiation of rat lung tissues. Ki67 expression was detected by immunohistochemistry. Western blot was used to measure the protein expression of small ubiquitin-related modifier-1(SUMO1) and C/EBPα. A co-immunoprecipitation assay was performed to measure the protein expression of SUMO-modified C/EBPα.</p><p><b>RESULTS</b>Compared with the air group, the hyperoxia group showed a decreased glycogen content in the lung tissue on postnatal day 4, and an increased content on postnatal days 7 and 14. Over the time of hyperoxia exposure, the hyperoxia group showed an increased expression of Ki67 in the lung tissue compared with the air group at all time points. Compared with the air group, the protein expression of C/EBPα increased on postnatal day 4 and decreased on postnatal days 7 and 14 in the hyperoxia group (P<0.05). The hyperoxia group had significantly upregulated expression of SUMO1 and SUMO-modified C/EBPα compared with the air group at all time points (P<0.05). In the hyperoxia group, the protein expression of SUMO-modified C/EBPα was positively correlated with the glycogen content (r=0.529, P<0.05) and the expression of Ki67 (r=0.671, P<0.05).</p><p><b>CONCLUSIONS</b>Hyperoxia may induce over-proliferation and differentiation disorders of alveolar epithelial cells in preterm rat model of BPD, possibly through an increased expression of SUMO-modified C/EBP&alpha.</p>


Subject(s)
Animals , Rats , Animals, Newborn , Bronchopulmonary Dysplasia , Metabolism , Pathology , CCAAT-Enhancer-Binding Protein-alpha , Metabolism , Cell Proliferation , Disease Models, Animal , Hyperoxia , Pathology , Ki-67 Antigen , Pulmonary Alveoli , Pathology , Rats, Sprague-Dawley , Sumoylation
15.
Chinese Journal of Contemporary Pediatrics ; (12): 410-415, 2018.
Article in Chinese | WPRIM | ID: wpr-689616

ABSTRACT

<p><b>OBJECTIVE</b>To study the effect of rhubarb on neonatal rats with bronchopulmonary dysplasia (BPD) induced by hyperoxia.</p><p><b>METHODS</b>A total of 64 rats (postnatal day 4) were randomly divided into four groups: air control, rhubarb control, hyperoxia model, and hyperoxia+rhubarb (n=16 each). The rats in the hyperoxia model and hyperoxia+rhubarb groups were exposed to hyperoxia (60% O2) to establish a BPD model. The rats in the rhubarb control and hyperoxia+rhubarb groups were given rhubarb extract suspension (600 mg/kg) by gavage daily. The pathological changes of lung tissue were evaluated by hematoxylin-eosin staining on postnatal days 14 and 21. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured by spectrophotometry. The mRNA and protein expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were determined by RT-PCR and Western blot respectively.</p><p><b>RESULTS</b>The hyperoxia model group showed reduced alveolar number, increased alveolar volume, and simplified alveolar structure, which worsened over the time of exposure to hyperoxia. These pathological changes were significantly reduced in the hyperoxia+rhubarb group. On postnatal days 14 and 21, compared with the air control and rhubarb control groups, the hyperoxia model group had significantly reduced radical alveolar count (RAC), significantly reduced activity of SOD in the lung tissue, and significantly increased content of MDA and mRNA and protein expression levels of TNF-α and IL-6 (P<0.05). Compared with the hyperoxia model group, the hyperoxia+rhubarb group had significantly increased RAC, significantly increased activity of SOD in the lung tissue, and significantly reduced content of MDA and mRNA and protein expression levels of TNF-α and IL-6 (P<0.05).</p><p><b>CONCLUSIONS</b>Rhubarb may play a protective role in rats with BPD induced by hyperoxia through inhibiting inflammatory response and oxidative stress.</p>


Subject(s)
Animals , Rats , Animals, Newborn , Bronchopulmonary Dysplasia , Metabolism , Pathology , Disease Models, Animal , Hyperoxia , Lung , Metabolism , Pathology , Plant Extracts , Therapeutic Uses , Rats, Sprague-Dawley , Rheum , Superoxide Dismutase , Metabolism , Tumor Necrosis Factor-alpha , Genetics
16.
The Korean Journal of Internal Medicine ; : 541-551, 2018.
Article in English | WPRIM | ID: wpr-714638

ABSTRACT

BACKGROUND/AIMS: We explored the effects of intermittent normobaric hyperoxia alone or combined with chemotherapy on the growth, general morphology, oxidative stress, and apoptosis of benzo[a]pyrene (B[a]P)-induced lung tumors in mice. METHODS: Female A/J mice were given a single dose of B[a]P and randomized into four groups: control, carboplatin (50 mg/kg intraperitoneally), hyperoxia (95% fraction of inspired oxygen), and carboplatin and hyperoxia. Normobaric hyperoxia (95%) was applied for 3 hours each day from weeks 21 to 28. Tumor load was determined as the average total tumor numbers and volumes. Several markers of oxidative stress and apoptosis were evaluated. RESULTS: Intermittent normobaric hyperoxia combined with chemotherapy reduced the tumor number by 59% and the load by 72% compared with the control B[a]P group. Intermittent normobaric hyperoxia, either alone or combined with chemotherapy, decreased the levels of superoxide dismutase and glutathione and increased the levels of catalase and 8-hydroxydeoxyguanosine. The Bax/Bcl-2 mRNA ratio, caspase 3 level, and number of transferase-mediated dUTP nick end-labeling positive cells increased following treatment with hyperoxia with or without chemotherapy. CONCLUSIONS: Intermittent normobaric hyperoxia was found to be tumoricidal and thus may serve as an adjuvant therapy for lung cancer. Oxidative stress and its effects on DNA are increased following exposure to hyperoxia and even more with chemotherapy, and this may lead to apoptosis of lung tumors.


Subject(s)
Animals , Female , Humans , Mice , Apoptosis , Carboplatin , Caspase 3 , Catalase , DNA , Drug Therapy , Glutathione , Hyperoxia , Lung Neoplasms , Lung , Oxidative Stress , RNA, Messenger , Superoxide Dismutase , Tumor Burden
17.
Chinese Journal of Contemporary Pediatrics ; (12): 230-235, 2018.
Article in Chinese | WPRIM | ID: wpr-300358

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the protective effect of prostaglandin E1 (PGE-1) against brain injury induced by hyperoxia in neonatal rats and observe the changes in the expression of glucose-regulated protein 78 (GRP78) and cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), and to provide a theoretical basis for the clinical application of PGE-1 in the treatment of neonatal brain injury induced by hyperoxia.</p><p><b>METHODS</b>Sixty neonatal Wistar rats were randomly divided into air control group, hyperoxic brain injury model group, and hyperoxic brain injury+PGE-1 group. All rats except those in the air control group were treated to establish a hyperoxic brain injury model. From the first day of modeling, the rats in the hyperoxia brain injury+PGE-1 group were intraperitoneally injected with PGE-1 2 μg/kg daily for 7 consecutive days, while the other two groups were treated with normal saline instead. The water content of brain tissue was measured; the pathological changes of brain tissue were evaluated by hematoxylin-eosin staining; the apoptosis of brain cells was assessed by nuclear staining combined with TUNEL staining; the protein expression of GRP78 and CHOP in brain tissue was measured by Western blot.</p><p><b>RESULTS</b>The water content of brain tissue in the hyperoxic brain injury model group was significantly higher than that in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the water content of brain tissue in the hyperoxic brain injury+PGE-1 group was significantly higher than that in the air control group (P<0.05). The pathological section of brain tissue showed inflammatory cell infiltration and mild cerebrovascular edema in the brain parenchyma in the hyperoxic brain injury model group; the periparenchymal inflammation and edema in the hyperoxic brain injury+PGE-1 group were milder than those in the hyperoxic brain injury model group. The apoptosis index of brain tissue in the hyperoxic brain injury model group was significantly higher than that in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the apoptosis index of brain tissue in the hyperoxic brain injury+PGE-1 group was significantly higher than that in the air control group (P<0.05). The protein expression of GRP78 and CHOP in brain tissue was significantly higher in the hyperoxic brain injury model group than in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the protein expression of GRP78 and CHOP was significantly higher in the hyperoxic brain injury+PGE-1 group than in the air control group (P<0.05).</p><p><b>CONCLUSIONS</b>PGE-1 has a protective effect against hyperoxia-induced brain injury in neonatal rats, which may be related to the inhibition of cell apoptosis by down-regulating the expression of GRP78 and CHOP.</p>


Subject(s)
Animals , Rats , Alprostadil , Therapeutic Uses , Animals, Newborn , Apoptosis , Brain , Pathology , Brain Injuries , Metabolism , Pathology , Heat-Shock Proteins , Hyperoxia , Neuroprotective Agents , Therapeutic Uses , Rats, Wistar , Transcription Factor CHOP
18.
Korean Journal of Ophthalmology ; : 70-76, 2018.
Article in English | WPRIM | ID: wpr-741280

ABSTRACT

PURPOSE: To evaluate the relationship between pericytes and endothelial cells in retinal neovascularization through histological and immunofluorescent studies. METHODS: C57BL/6J mice were exposed to hyperoxia from postnatal day (P) 7 to P12 and were returned to room air at P12 to induce a model of oxygen-induced retinopathy (OIR). The cross sections of enucleated eyes were processed with hematoxylin and eosin. Immunofluorescent staining of pericytes, endothelial cells, and N-cadherin was performed. Microfluidic devices were fabricated out of polydimethylsiloxane using soft lithography and replica molding. Human retinal microvascular endothelial cells, human brain microvascular endothelial cells, human umbilical vein endothelial cells and human placenta pericyte were mixed and co-cultured. RESULTS: Unlike the three-layered vascular plexus found in retinal angiogenesis of a normal mouse, angiogenesis in the OIR model is identified by the neovascular tuft extending into the vitreous. Neovascular tufts and the three-layered vascular plexus were both covered with pericytes in the OIR model. In this pathologic vascularization, N-cadherin, known to be crucial intercellular adhesion molecule, was also present. Further evaluation using the microfluidic in vitro model, successfully developed a microvascular network of endothelial cells covered with pericytes, mimicking normal retinal angiogenesis within 6 days. CONCLUSIONS: Pericytes covering endothelial cells were observed not only in vasculature of normal retina but also pathologic neovascularization of OIR mouse at P17. Factors involved in the endothelial cell-pericyte interaction can be evaluated as an attractive novel treatment target. These future studies can be performed using microfluidic systems, which can shorten the study time and provide three-dimensional structural evaluation.


Subject(s)
Animals , Humans , Mice , Brain , Cadherins , Endothelial Cells , Eosine Yellowish-(YS) , Fungi , Hematoxylin , Human Umbilical Vein Endothelial Cells , Hyperoxia , In Vitro Techniques , Lab-On-A-Chip Devices , Microfluidics , Microvessels , Neovascularization, Pathologic , Pericytes , Placenta , Retina , Retinal Neovascularization , Retinaldehyde
19.
Acta cir. bras ; 32(7): 503-514, July 2017. tab, graf
Article in English | LILACS | ID: biblio-886213

ABSTRACT

Abstract Purpose: To evaluate the pulmonary oxidative stress in diabetic rats exposed to hyperoxia for 90 minutes. Methods: Forty male Wistar rats were divided into four groups, each one containing 10 animals, according to the oxygen concentration to which they were exposed: 21%, 50%, 75% and 100% (hyperoxia). In each group five animals were randomly induced to diabetes by means of at a dose of 55 mg/kg of streptozotocin (STZ). Results: Seventy two hours after diabetes induction, a significant difference was seen in blood glucose in the experimental groups in comparison with the control. In the experimental groups a significant difference was observed in the concentration of malondialdehyde (MDA) in lung tissue and blood plasma (p<0.05), except the 50% group. In the control group, significant differences in the MDA concentration in plasma and lung tissue were also observed (p<0.05), except the 75% group. The MDA concentration in lung tissue in comparison with the diabetic and non-diabetic groups showed a significant difference in the 21% group; however, no difference was seen in the 75 and 100% groups. Conclusion: In diabetic animals high oxygen concentrations (75 and 100%) do not appear to exert deleterious effects on lipid peroxidation in lung tissue.


Subject(s)
Animals , Male , Rats , Oxidative Stress/physiology , Hyperoxia/complications , Diabetes Mellitus, Experimental/metabolism , Lung/metabolism , Time Factors , Rats, Wistar , Hyperoxia/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Lung/physiopathology , Lung/pathology
20.
Acta cir. bras ; 32(5): 359-368, May 2017. tab, graf
Article in English | LILACS | ID: biblio-837709

ABSTRACT

Abstract Purpose: To evaluate the changes of caveolin-1 in lung fibroblasts in newborn Wistar rats when exposed to hyperoxic conditions, as well as lung fibroblasts cell cycle. Methods: One hundred newborn Wistar rats were randomly divided (50 rats/group) into experimental and control groups, exposed to hyperoxic conditions or normal air, respectively. The fraction of inspired oxygen (FiO2) in the experimental group was 90%, whereas this value was 21% in the control group. Lung fibroblasts were collected on days 3, 7, and 14 of the experiment. Caveolin-1 expression dynamics in lung fibroblasts was assayed in each group by immunofluorescence and Western blot analyses. Flow cytometry (FCM) was used to assess the proportions of lung fibroblasts at different stages of the cell cycle. Results: On day 3, no significant difference in caveolin-1 expression was observed between the hyperoxic and control groups; however, on days 7 and 14, caveolin-1 expression was significantly lower in the hyperoxic group than in the control (P<0.05). No apparent differences were observed in caveolin-1 expression in the control group at the different time points. Using FCM analysis, we showed that the proportion of lung fibroblasts in G0/G1 phase in the hyperoxic group decreased compared to that of the control group on day 7, while the proportion of S-phase cells increased (P<0.05). These differences were more significant when the groups were compared on day 14 (P<0.01). Conclusion: After seven days the exposure to hyperoxic conditions, lung fibroblasts proliferated and caveolin-1 expression decreased.


Subject(s)
Animals , Female , Cell Proliferation , Caveolin 1/metabolism , Fibroblasts/metabolism , Lung/metabolism , Lung Diseases/metabolism , Oxygen/pharmacology , Random Allocation , Cell Cycle , Cells, Cultured , Chronic Disease , Rats, Wistar , Hyperoxia , Models, Animal , Caveolin 1/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Lung/cytology , Lung/drug effects , Lung Diseases/classification , Lung Diseases/chemically induced , Animals, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL